Independence number of edge‐chromatic critical graphs

نویسندگان

چکیده

Let G $G$ be a simple graph with maximum degree Δ ( ) ${\rm{\Delta }}(G)$ and chromatic index χ ′ $\chi ^{\prime} (G)$ . A classical result of Vizing shows that either = (G)={\rm{\Delta or + 1 }}(G)+1$ is called edge- }}$ -critical if connected, − e (G-e)={\rm{\Delta for every ∈ E $e\in E(G)$ an n $n$ -vertex graph. conjectured α $\alpha , the independence number at most 2 $\frac{n}{2}$ The current best on this conjecture, shown by Woodall, < 3 5 (G)\lt \frac{3n}{5}$ We show any given ε 0 $\varepsilon \in (0,1)$ there exist positive constants d ${d}_{0}(\varepsilon )$ D ${D}_{0}(\varepsilon such minimum least ${d}_{0}$ ${D}_{0}$ then \left(\frac{1}{2}+\varepsilon \right)n$ In particular, we $d$ ≥ 4.5 11.5 }}(G)\ge {(d+1)}^{4.5d+11.5}$ 7 12 4 19 \left.\left\{\displaystyle \begin{array}{cc}\frac{7n}{12} & \,\text{if}\,\,d=3,\\ \frac{4n}{7} \,\text{if}\,\,d=4,\\ \frac{d+2+\sqrt[3]{(d-1)d}}{2d+4+\sqrt[3]{(d-1)d}}n\lt \,\text{if}\,\,d\ge 19.\end{array}\right.$

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the independence number of edge chromatic critical graphs

In 1968, Vizing conjectured that for any edge chromatic critical graph G = (V,E) with maximum degree ∆ and independence number α(G), α(G) ≤ |V | 2 . It is known that α(G) < 3∆−2 5∆−2 |V |. In this paper we improve this bound when ∆ ≥ 4. Our precise result depends on the number n2 of 2-vertices in G, but in particular we prove that α(G) ≤ 3∆−3 5∆−3 |V | when ∆ ≥ 5 and n2 ≤ 2(∆− 1).

متن کامل

Edge number critical triangle free graphs with low independence numbers

The structure of all triangle free graphs G = (V,E) with |E|−6|V |+α(G) = 0 is determined, yielding an affirmative answer to a question of Stanis law Radziszowsky and Donald Kreher.

متن کامل

K-independence Critical Graphs

Let k be a positive integer and G = (V (G), E(G)) a graph. A subset S of V (G) is a k-independent set of G if the subgraph induced by the vertices of S has maximum degree at most k − 1. The maximum cardinality of a k-independent set of G is the k-independence number βk(G). In this paper, we study the properties of graphs for which the k-independence number changes whenever an edge or vertex is ...

متن کامل

Semi-regular graphs of minimum independence number

There are many functions of the degree sequence of a graph which give lower bounds on the independence number of the graph. In particular, for every graph G, α(G) ≥ R(d(G)), where R is the residue of the degree sequence of G. We consider the precision of this estimate when it is applied to semi-regular degree sequences. We show that the residue nearly always gives the best possible estimate on ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Graph Theory

سال: 2022

ISSN: ['0364-9024', '1097-0118']

DOI: https://doi.org/10.1002/jgt.22825